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Abstract

Robust detection of pedestrian in challenging illumina-
tions is essential for autonomous driving. Visible and
thermal cameras have been shown to be complementary
for detecting pedestrian under day and night settings.

In this paper, we present an internal multimodal
dataset for pedestrian detection. This dataset is com-
posed of image pairs taken in the visible and the far
infrared spectrum. The infrared images showcase the
image quality provided by Lynred’s state-of-the art sen-
sors.

Moreover, we design a new approach to visible and
thermal fusion for pedestrian detection based on state-
of-the-art methods for multimodal fusion and object de-
tection. Our method uses multi-task learning to train
an end-to-end model to perform detection on the mul-
timodal information and on each modality simultane-
ously, we also introduce a gating mechanism to actively
weight each modality per pixel.

We evaluate the improvement brought by each com-
ponent of our approach on the introduced multimodal
dataset for pedestrian detection, and we compare its per-
formances to multiple baselines. Our fusion method out-
performs other fusion techniques and it achieves the best
performance compared to early and late fusion methods.
Our results show that the addition of infrared sensors to

the cameras operating in the visible spectrum leads to a
significant improvement in pedestrian detection thanks
to the thermal signature detection and that all sensors
can be easily implemented into standard ADAS plat-
forms.

Keywords— Autonomous Driving, Far-infrared, Pedestrian
Detection, Gated Multimodal Fusion, Multitask Learning,
Deep Neural Networks

1 Introduction

More than 1.3M people are killed every year due to
road fatalities. As presented in table 1, the French Road
Safety Observatory [9] details figures of fatalities by cat-
egory of road users. If car user and motorcyclist fatal-
ities represent the largest part of road fatalities, pedes-
trian and pedal cyclist fatalities represent 21%, and have
increased over the last six years. The French Road
Safety Observatory also reports that 70% of the seri-
ously injured people are vulnerable road users (VRU)
such as motorcyclists, moped users, cyclists and pedes-
trians.

In its 2025 roadmap, the Euro NCAP organization [8]
reports that VRU injuries reach more than 135 000 peo-
ple in Europe each year. ADAS are expected to have a
key impact on reducing VRU injuries and fatalities. In
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Fatalities Variation
2016 2010-2016

Car users 51% -17%
Motorcyclist 18% -13%
Pedestrians 16% +15%
Pedal cyclists 5% +10%

Table 1: 2016 French accidentology data

the set of ADAS functionalities, the SDB1 underlines the
impact of the Autonomous Emergency Braking (AEB)
that could decrease VRU fatalities by 13% to 18% in the
United States.

AEB is widely deployed into Euro NCAP roadmap
[8] in AEB VRU, cyclist, pedestrian, junction & cross-
ing and Head-on. Before planning decision and per-
forming autonomous braking, AEB should rely first on
VRU and/or obstacle robust detection.

In a study leaded by the AAA in October 2019 [1],
four vehicles were selected (midsize sedans from 4
different manufacturers) and tested according to euro
NCAP scenario. The four selected vehicles had pedes-
trian detection system with collision mitigation func-
tionality. Research questions were:

1. How do vehicles equipped with pedestrian detec-
tion systems perform when encountering an adult
pedestrian crossing the roadway in different situa-
tions?
Results: Even in the simplest situation at 20mph,
reliability of systems is not perfect as collision with
an adult pedestrian target was avoided 40% of the
time, and during an additional 35% of the time
collision were mitigated by an average speed of
4.4mph. For the last 25% of time, vehicles im-
pacted the pedestrian target at full speed.

2. How do pedestrian detection systems function at
night?
Results: Evaluated pedestrian detection systems
were ineffective under nighttime conditions.

These results show that improvements are still re-
quired for the AEB function in normal conditions and
that new solutions are needed in order to address

1SDB: https://www.sbdautomotive.com

challenging scenarios, especially nighttime conditions
where none of the four vehicles has detected any pedes-
trian.

In order to sense and to understand the surroundings
of the vehicle, sensors based on four different technolo-
gies are mainly considered: Ultrasonic, RADAR, LI-
DAR and Cameras. Because all of these technologies
have advantages and drawbacks regarding detection per-
formance, a sensor fusion will enable to optimize per-
ception performance in line with recommendations of
Dibotics [3]. Regarding imaging technology used in
camera sensors, the AWARE project [10] went to the
conclusion that Visible RGB extended to NIR (or Red-
Clear sensors) combined with LWIR (or Far-Infrared
or Thermal) provide the best spectral bands combina-
tion to improve ADAS detection performance of vehi-
cle, pedestrian, bicycle, animals or road marking, and
recognize traffic signs, in all weather conditions.

This paper focuses on far-infrared camera integration
in combination with a RGB camera, presents an internal
color-thermal dataset, introduces a deep learning strat-
egy to improve pedestrian detection, and presents our
results obtained with different fusion approaches.

2 Thermal camera detection
principle

According to the Plank law presented in the Figure 1,
any object will radiate light energy mainly depending
on its own temperature and its properties of emissivity.

Simplified equation of the Planck is the Wien dis-
placement law (Figure 2).

With λ being the spectral wavelength and T the tem-
perature of the object. Wien law gives the maximal
wavelength at which the object will radiate according
to its temperature. Thus human or any VRU with a tem-
perature closed to 300K will radiate their energy around
a wavelength pic around 10 µm. Figure 3 details the
different spectral bandwidth with respect of the infrared
light, from Short Wave to Very Long Wave including
Mid and Long wave.

Microbolometers MEMs’ based sensor convert long-
wave infrared radiation into current. To be sensitive only
to the light flux coming from the scene, microbolometer
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Figure 1: Planck law.

λmax(T ) =
2.89777291 · 10−3 ·K

T

Figure 2: Wien law.

sensors are packed into vacuum package in order to iso-
late pixels from the surroundings. Performance of mi-
crobolometer based sensor will mainly depend on vac-
uum package quality, pixel design, thermometer mate-
rial and CMOS readout integrated circuit used to bias
microbolometer and arrange pixel data. Over a large
operating temperature from -40◦C up to +85◦C, state
of the art thermal sensors based on 12µm pixel pitch
microbolometer can typically detect 50 mK of temper-
ature variation and perform image size from 80x80 to
1280x1024 pixels at frame up to 120 frames.

Thus, microbolometer generates thermal images only
depending on object temperature and structure, constant

Figure 3: Imaging spectral bandwidth.

Figure 4: From raw to processed images

and immune to any external light source such as sun,
head or street lights.

3 Cameras integration

3.1 Cameras setting
The full system consists of two pairs made of an infrared
camera and an RGB camera, mounted on an aluminium
structure.

The infrared cameras integrate a VGA sensor
(640x480 pixels) with a lens allowing an horizontal field
of view of 42◦ and an aperture of f/1.2.

The RGB cameras integrate a Sony IMX273 sensor
(1448x1086 pixels) with a lens allowing an horizontal
field of view of 45◦ and an aperture of f/1.4.

The cameras on a pair are 12.7 cm apart and the two
pairs are 34.1 cm apart. The main RGB camera con-
trols the trigger, that is sent to the three other ones, to
synchronize the capture at 30 frames per second. The
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Figure 5: Camera system

Figure 6: Full system mounted on the car

system is installed on top of a car. The cameras where
initially adjusted to look at a common point roughly 5
meters in front and 1 m below the structure.

Each pair of cameras is sending its images to a ded-
icated laptop, running a piece of software that records
them in separated image files, with lossless compres-
sion.

Infrared images are recorded as 640x480 16bits im-
ages. Images from the RGB camera are initially
1448x1086 image but only the 1280x960 rightmost and
vertically centered region is kept (cropped in the sen-
sor), to facilitate alignment, as it corresponds roughly to
the region seen by the infrared camera.

3.2 Geometric calibration
Camera calibration usually involves the use of a chess-
board. However a simple chessboard isn’t visible by
thermal cameras. In an effort to calibrate at the same

Figure 7: Chessboard used for calibration.

time infrared cameras and RGB cameras as well as to
facilitate cameras alignment, we crafted a chessboard
visible in both spectra.

It consists in a wood plate on which 5 cm wide
squares are glued forming a 7x8 chessboard pattern.
Black squares are cut in a 5mm thick foam board and
white squares are cut in 5 mm thick aluminium ruler.
Aluminum squares are sanded to avoid specular reflec-
tion.

When used with a correct angle, the corners of
the chessboard can be detected in RGB images using
OpenCV directly. Detection is possible in infrared im-
ages thanks to the reflection of a uniform body’s radia-
tion by the aluminium, giving a different reading for the
black squares and white squares temperatures. Usually
the body used is the roof, constraining the angle of the
chessboard used.

However, corners detection in infrared images is not
as easy as in RGB. Images are corrected subtracting a
shutter image. Every images intended to be used in cal-
ibration had the approximate four outer corners of the
pattern labeled manually to entirely avoid the chess-
board detection step. Corners detection is made by
warping the labeled chessboard into a rectangle, and fil-
tering of the image before using OpenCV corner detec-
tion, due to the heavy noise of the infrared image.

The filtering step consists in computing the median
value µ in the warped area, clipping the image between
the median of the values below µ and the median of the
values above µ. This step removes a lot of the noise,
and separates the white squares from the black nicely.
A Gaussian blur and a median blur with 3x3 kernels are
finally applied. This gave the best results with OpenCV
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detection.
The pandemic context made it very difficult to find the

material and tools to craft the board, hence a result not
very accurate, but it was sufficient for our application.

3.3 Thermal camera signal enhancement
Far-infrared cameras are sensitive to any temperature
change either coming from the scene of interest or com-
ing from camera operating temperature drift. The image
model of such device is :

Outputi,j = Gi,j(TFPA) . Scenei,j +Oi,j(TFPA)

Where G and O are respectively a gain and an offset
image depending on the sensor temperature TFPA, and
inducing non uniform noise on the image. Non unifor-
mity correction (NUC) must be applied.

The most widely used NUC method is the use of a me-
chanical shutter to observe several frame of a uniform
body and deduce the current gain and offset images.
However this process must be performed frequently, as
the temperature evolves quickly, interrupting the video
flow. Moreover the need of a mechanical shutter is ma-
jor drawback.

Our choice for NUC is the use of a scene-based shut-
terless correction algorithm. This method requires a fac-
tory calibration using blackbodies of uniform temper-
ature, but doesn’t require any more images taken in a
controlled environment afterwards.

Additionally we apply a tone mapping to be able to
display pixels (16b format) on a screen (8b format). This
tone mapping enhance the contrast of the output images
while preserving the dynamic.

3.4 Thermal camera alignment with RGB
camera

Obtaining both far-infrared and visible image of the
same scene presents many interests:

• Domain comparison for challenging tasks such as
pedestrian detection.

• Acquisition of multispectral dataset.

• Transfer of meta-data such as labels in machine
learning oriented tasks.

(a) Day (b) Night

Figure 8: Examples of RGB-Thermal composite image
in day and night conditions.

Digital shift was applied to both images in order to
get a perfect alignment of the center of each image.
This technique proves its effectiveness for targets far
enough compared to the distance between the two cam-
eras. As the two cameras have slightly different fields of
views, distortions are different and need to be corrected.
The last operation was cropping to the biggest region
covered by both images. As a result infrared images
were cropped from 640x480 to 555x479 , RGB images
were cropped from 1448x1086 to 1117x962. Figure 4
presents the pre-processing steps from the raw images
to the input of the detection model. Figure 8 show some
examples of aligned images.

4 Dataset description

4.1 Data annotation
8820 frames from the captured videos were sampled for
manual annotation, with a maximum of two sampled
frames per second of video. We filtered out the images
after annotation to only keep the images that have at
least one bounding box (5720 images). The training and
test videos were selected from different shooting ses-
sions to ensure that our model is tested on images not
seen during training.

To annotate the ground truth, we used the CVAT com-
puter vision annotation tool. The annotations were done
on the visible frames, while using the paired infrared
frames for verification. This was necessary for night
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time annotation where distant pedestrians are rarely vis-
ible in the color images.

Individual pedestrians and people riding a two-
wheeled vehicle were labeled as ‘person’. Not distin-
guishable individuals were labeled as ‘crowd’. In the
training set, we add the ‘occlusion’ tag to specify oc-
cluded pedestrians. In the testing set, we separate two
types of occlusion : partial occlusion (less than 50% of
the object occluded) and heavy occlusion (more than
50% of the object occluded). Moreover, objects that
could not be clearly identified as persons by annotators
were labeled as ‘person?’ and are ignored in the evalua-
tion.

4.2 Dataset properties

Different shooting sessions were done different day and
night times. The overall makes a total video duration of
about 9 hours. Table 2 present the number of acquired
frames corresponding to each shooting scenarios, and
the total time of the scenario in the overall videos.

To show the diversity of our data, we also present the
distribution of the annotated data according to the illu-
mination (day/night) setting, occlusion type, and the dis-
tance of objects from the camera.

• Dataset distribution according to the day/night
setting: We made sure to have a balanced distri-
bution between day and night. Table 3 presents
the number of images and the number of bounding
boxes for each setting.

• Dataset distribution according to occlusion
type: The histogram in figure 9 shows the distri-
bution of the test dataset according to the amount
of occlusion.

• Dataset distribution according to distance from
camera: Figure 10 shows the distribution of the
test dataset (only not occluded objects) according
to the distance from the cameras. We mention that
the annotation were very delicate, hence very small
(far) objects were also annotated, we set 19 pix-
els as the lower limit of the bounding box diagonal
size.

Settings Images number Appearance time (s)

Day clear extra urban 44971 1499
Day clear parking lot 47451 1581
Day clear school 1947 141
Day clear tunnel 3824 136
Day clear urban 434698 16168
Night clear extra urban 6464 215
Day clear urban 369159 12305

Total classified 908514 32045

Table 2: Shooting scenarios of the overall acquired data

Training Testing All
Day Night Day Night

# Images 2126 2083 730 781 5720
# Annotations 8293 8090 3132 2480 21995

Table 3: Dataset distribution according to day/night set-
ting

5 Pedestrian detection
The task of pedestrian detection is well studied by the
computer vision community. This is a challenging prob-
lem because of the variety of poses and appearances that
a pedestrian can take and the large number of possible
use cases. Most approaches in the literature use Con-
volutional Neural Networks (CNN) for pedestrian de-
tection, applied to visible images from RGB cameras.
However, using only the visible information has some
limitations such as insufficient lighting sensitivity. Ther-
mal cameras are more robust to these conditions since
they are sensitive to far infrared radiations directly emit-
ted by objects.

In a previous work [2], we showed that the combi-
nation of infrared and thermal cameras could improve
the performance of a state-of-the-art pedestrian detec-
tion method even when using a basic method for fusing
both modalities. In this work, we are especially inter-
ested in studying how to fuse both modalities to maxi-
mize the robustness of a pedestrian detection system.

Recent work have proposed new Deep Neural Net-
work architectures for multimodal fusion to learn the
best way to fuse the modalities based on the data. Cen-
tralNet [11] proposed a meta-architecture in which a
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Figure 9: Test dataset distribution according to occlu-
sion type.

central pathway draws input as a weighted sum of each
modality at multiple level of the two unimodal Deep
Neural Network. The weights for this multimodal fusion
are parameters of the models that are trained end-to-end
with the rest of the architecture. In addition, the au-
thors use a multi-task learning scheme to maximize the
performance of the central pathway while keeping good
performances for the unimodal networks. Other work
propose to adaptively modulate the fusion based on the
input image. In the domain of object detection, GIF net-
works [6] proposed a gating mechanism composed of a

Figure 10: Test dataset distribution according to dis-
tance from the camera.

Figure 11: Early fusion with composite images

Figure 12: Intermediate Gated Fusion

Figure 13: Multi-Task Training

weight generator module that takes the concatenation of
the features from both modalities as input and predict a
weight for each pixel and each modality.

5.1 Methodology

We integrate ideas from both CentralNet and GIF net-
works to design an object detection architecture that can
learn from data how to fuse features from visible and
far infrared images. Building on our previous work, we
use RetinaNet [7] as a basis for this work. RetinaNet is
part of a family of architectures called “single shot de-
tectors” (SSD). The principle of this type of architecture
is to predict if there is an object of a given class in a large
number of fixed bounding boxes called “anchor boxes”.
Those boxes of multiple scale and aspect ratio are dis-
tributed on a grid on the image. The network is also
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trained to predict a correction of those boxes to better fit
the object. SSD are composed of a pretrained backbone
that extract features from the input images, a neck that
integrate features of multiple levels together and a head
that output the prediction for each anchor box.

Our proposed architecture is composed at training
time of two auxiliary RetinaNet, one for each modality,
and a central pathway for the multimodal fusion com-
posed of an head and a modified neck. This additional
pathway is the only one required during inference. We
modify the Feature Pyramid Network (FPN) neck mod-
ule from RetinaNet to integrate an Information Fusion
Modules (IFM) for each level of the pyramid. The IFM
takes as input the concatenation of features from both
modalities and generate a per-pixel weight map for each
modality. It then feed the dynamically weighted sum of
the features from both modalities to the FPN.

5.2 Training setup
In order to fairly compare the different domains under
the same conditions, the architecture is kept the same
(RetinaNet with FPN) while varying the fusion method.
Hyper-parameters and data augmentation scheme are
also kept the same for all experiments. In the inter-
mediate multimodal fusion experiment, a specific mul-
timodal augmentation strategy is added. As the archi-
tecture takes RGB images as input, far-infrared images
were converted to RGB images using the inferno col-
ormap [5], a perceptually-uniform colormap that better
use the three color layers. Images were also resized to
match the visible images size.

The RetinaNet model is initialized using weights pre-
trained on MS COCO dataset and trained with Stochas-
tic Gradient Descent optimizer (SGD) with a batch size
of 2, a momentum of 0.9 and a weight decay of 0.0001.
A step decay scheme is used to gradually decrease the
learning rate with an initial learning rate of 0.01.

5.3 Experiments
• Trained on visible only: RetinaNet model trained

on the RGB images.

• Trained on infrared only: RetinaNet model trained
on the thermal images.

• Early fusion: RetinaNet model trained on the com-
posite images.

• Late fusion: Models trained on each modality are
used to predict raw detections on each modality re-
spectively. These detections are then combined be-
fore applying the ’NMS’ algorithm to produce the
final detections.

• Intermediate Gated fusion: Intermediate fusion
consists of having a single model for both modali-
ties. In this case, two backbones are responsible for
extracting the feature maps of the corresponding
modality. These features are then passed through
a multimodal fusion module which merges the fea-
tures of both modalities at each level of the back-
bone, before transmitting them to the FPN. Finally,
the set of features after fusion is used to predict de-
tections.

5.4 Evaluation and results

To evaluate the results, we use both Average Precision
(AP) and Log Average Miss Rate metrics. Average Pre-
cision (AP) corresponds to the area under the Precision-
Recall curve. An AP of 1 corresponds to perfect detec-
tion on all the dataset, as computed against the human
annotated ground-truth. A “detection” is considered as
correct when the predicted bounding box is similar to
the annotated one. Intersection over Union (IoU) is used
as a similarity metric, corresponding to the ratio of the
intersection of the two bounding boxes over the union of
those. The evaluation presented in Tables 4 and 5 is done
with an IoU threshold equal to 0.5. The Log-Average
Miss Rate (LAMR) referenced in [4] is calculated by av-
eraging miss rate at nine False Positive Per Image FFPI
rates evenly spaced in log-space in the range 10−2 and
100.

As shown in these results, far-infrared and visible ex-
cel in different conditions: the visible modality performs
the best during the day while far-infrared performs the
best during the night.

Contrast between pedestrians and their surrounding is
the key element for detection. For visible images, maxi-
mum contrast corresponds to a situation with high lumi-
nosity also being the warmest of the day. At the opposite
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Methods Illumination Occlusion Distance

Day Night Both None Partial Heavy Near Medium Far Very far
<10m <30m <50m >50m

Infrared only 36 62 47.2 61.5 35.4 13.7 93.9 91.2 75.4 24.3
Visible only 67 48.5 58.9 71.4 49.1 21.8 99.9 97 90.2 38.3
Early fusion 58.8 57.3 58.1 71.8 47.6 19.7 98.6 97 90.5 38.3
Late fusion 62.2 62 62 74.5 51.9 22.7 99.6 97.8 93.5 42
Gated fusion 66.3 66.1 66.2 78.1 58.5 28.3 99.6 97.9 94.7 50.4

Table 4: AP results on the test dataset of different methods in different settings

Methods Illumination Occlusion Distance

Day Night Both None Partial Heavy Near Medium Far Very far
<10m <30m <50m >50m

Infrared only 78.8 63.7 72.3 55.9 77.6 92.7 11.1 17.1 40.6 86.2
Visible only 60 70.2 64.3 55.9 77.6 92.7 0 5.8 19.6 78
Early fusion 65.5 65.6 65.4 44.7 69.9 89.3 2.3 6.5 19.8 78.7
Late fusion 65.1 63.5 65.4 45.7 70.7 90.5 0 4.5 15.1 77.6
Gated fusion 57.5 58.3 57.9 38.2 62.3 85.7 0 3.8 11.1 70.4

Table 5: LAMR results on the test dataset of different methods in different settings

for far-infrared images, maximum contrast corresponds
to lower temperature of the road and building, like night
or bad weather conditions. Far-infrared and visible im-
ages are thus complementary for pedestrian detection.

The complementary nature of visible and far-infrared
is reinforced by the good performances of the gated mul-
timodal fusion network as it obtains the best overall re-
sults. Some examples of complementary detections on
both day and night in regards to different difficult situa-
tions (far distance, poor illumination, and liveness diffi-
culty detection) are shown in the Appendix.

6 Conclusion

In this paper we introduced a novel internal visible-
thermal dataset for pedestrian detection. We used two
visible-thermal camera pairs for the dataset shooting.
We expect to exploit the stereo information in future

work.

We’ve given details about the data distribution ac-
cording to different aspects such as : illumination, oc-
clusion type and distance from the camera. For the illu-
mination aspect, our dataset is pretty balanced between
day and night. As for the occlusion type aspect, we
specify 3 occlusion tags (no occlusion, partial occlusion
and heavy occlusion), this enables an advanced analy-
sis of the pedestrian distribution, but it’s also necessary
for the detection results interpretation. As regards to the
distance from the camera, the annotated pedestrians are
distributed in a large interval (0-170m), in fact very far
pedestrians were annotated to be able to analyse the be-
haviour of the detection model at long range.

Moreover, we presented a new multimodal fusion
method for pedestrian detection. This method uses mul-
titask learning and a specific data augmentation strategy
to train a robust end-to-end model for pedestrian de-
tection. In a previous work [2], we studied the use of
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an early fusion method that improved the overall detec-
tion results but gave worse results than the ‘only visible’
method during daytime and than ‘only thermal’ during
nighttime.

With the use of the gated fusion,

• in day condition, average precision become com-
petitive with only visible method while LAMR is
improved.

• in night condition, both metrics are improved.

• the gated fusion approach outperforms all other
tested fusion approaches.

• It has a large gain compared to the use of only
the visible information, especially in adverse con-
ditions (night, headlight glare, occlusions, long
range, entrance/exit of tunnel).
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7 Appendix

(a) day (b) night (c) both

Figure 14: Precision-Recall curves.

(a) day (b) night (c) both

Figure 15: Miss Rate vs False Positive Per Image curves.

Figure 16: Difficult day example due to liveness detection difficulty. Left: results using only the visible modality.
Right: results using our gated fusion method.
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Figure 17: Difficult night example due to long distance from camera. Top row: full image. Bottom row: zoomed on
the region of interest. Left: results using only the visible modality. Right: results using our gated fusion method.

Figure 18: Difficult night example due to poor illumination. Top row: full image. Bottom row: zoomed on the region
of interest. Left: results using only the visible modality. Right: results using our gated fusion method.
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